E021_Cadena de pensamiento. Desbloqueando el razonamiento de la IA
Ep. 21

E021_Cadena de pensamiento. Desbloqueando el razonamiento de la IA

Episode description

¿Alguna vez te has preguntado cómo lograr que una Inteligencia Artificial no solo responda, sino que realmente razone ante problemas complejos? 🧠✨ En este episodio desglosamos el influyente paper “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”. Exploraremos cómo una técnica sorprendentemente sencilla —generar una ““cadena de pensamiento”” o una serie de pasos intermedios de razonamiento 🔗— permite que los modelos de lenguaje grandes (LLMs) desbloqueen habilidades cognitivas que parecían fuera de su alcance, mejorando drásticamente su rendimiento en tareas de lógica, aritmética y sentido común. Los resultados son impactantes: descubre cómo un modelo de 540B parámetros, utilizando tan solo 8 ejemplos de esta técnica, logró superar el rendimiento del state-of-the-art (incluso a un GPT-3 con finetuning) en el desafiante benchmark de problemas matemáticos GSM8K 📊. Analizaremos por qué mostrar el ““proceso mental”” marca la diferencia entre una alucinación y el éxito absoluto en tareas simbólicas. ¡Dale al play ▶️ para entender la estrategia esencial que cambió la forma en que hacemos prompt engineering! 🚀 Fuentes: • Paper Original: Chain-of-Thought Prompting Elicits Reasoning in Large Language Models (Wei et al., 2022)